On the Exponential Diophantine Equation $x^2 + D = y^n$: a brief survey

Horia Vîrgolici University "Spiru Haret" Bucharest hvirgolici@yahoo.com

Abstract

We give a survey on some important results on the exponential Diophantine equation $x^2 + D = y^2$.

Keywords: exponential Diophantine equation, Lebesgue-Nagell equation, generalized Ramanujan-Nagell equation

ACM/AMS Classification: 11D41, 11D61.

1. Introduction

In this paper, we focus our attention to the equation

$$x^2 + D = y^n, \text{ in integers } x, y, n \ge 3 \tag{1}$$

where D is a positive integer. We present however, for some particular cases, solutions with x = 1 (i.e. x < 3).

V. A. Lebesgue [35] proved in 1850 that there are no non-trivial solutions for D = 1. Nagell [44] proved in 1923 that equation (1) has no solutions for D = 3 and D = 5. Because Lebesgue and Nagell were the first mathematicians with concrete results concerning equation (1), this equation is called in [17] the Lebesgue-Nagell equation.

S.Ramanujan [53] asked in 1913 if the Diophantine equation $x^2 + 7 = 2^n$ had any positive solutions (x, n) other than (1, 3), (3, 4), (5, 5), (11, 7) and (181, 15). Nagell [45] ([48] in English) proved in 1948 that these are the only solutions. That's why equation $x^2 + 7 = 2^n$ is often called the Ramanujan-Nagell equation. Cohen [28] made a survey of its history and related problems. Ribenboim collected Nagell's works in [49].

A comprehensive survey on equation (1) is given by Abu Muriefah and Bugeaud [1]. We complete that survey with recent results, especially when D is in some infinite set (see section 3 of the present survey).

2. The Diophantine equation $x^2 + D = y^n$, where D is fixed

As mentioned in section 1, equation (1) was solved by Lebesgue for D = 1 and by Nagell for D = 3 and D = 5. The case D = 3 was also proved by Brown [16], and then by Cohn [26].

Ljunggren [38] solved (1) for D = 2, finding the only solution $5^2 + 2 = 3^3$. Cohn asserted in [25] that Euler found the same solution for D = 2 in [31]. Nagell [46] also gave the solution for D = 2. Nagell [47] solved the case D = 4, obtaining the only solutions $2^2 + 4 = 2^3$ and $11^2 + 4 = 5^3$. A more elementary proof for this case was given by Sury [58].

Cohn [25] completed the solutions for 77 values of D, where $1 \le D \le 100$, using elementary methods. He established that there are no solutions at all for $D \in \{1, 3, 5, 6, 8, 9, 10, 14, 21, 22, 24, 27, 29, 30, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 66, 68, 69, 70, 73, 75, 78, 82, 84, 85, 88, 90, 91, 93, 94, 98\}$. He also gave solutions for 31 values of D (see Table 1):

Mignotte and de Weger [43] solved equation (1) for D = 74, obtaining (x, y, n) = (13,3,5), (985,99,3) and proved that equation (1) has no solution for D = 86.

Bennett and Skinner [12] applied theory of Galois representations and modular forms to solve the case D = 55, obtaining (x, y, n) = (3,2,6), (3,4,3), (419,56,3) and the case D = 95, obtaining (x, y, n) = (11,6,3), (529,6,7).

The remaining values for D were solved in 2004 by Bugeaud, Mignotte and Siksek [17] (see Table 2).

3. The Diophantine equation $x^2 + D = y^n$, with D in some infinite set

In recent years, equation (1) has been analyzed also in the more general case when D is not fixed but $D \in S$ with D > 0. One major result, called the 'Theorem BHV', was obtained in [15] by Bilu, Hanrot and Voutier, who completely solved the problem of existence of primitive divisors in Lucas-Lehmer sequences. This theorem has many applications to Diophantine equations and it was applied in some papers mentioned below.

Cohn [24] proved that if $D = 2^{2k+1}$, then equation (1) has solutions (three families of solutions) only when n = 3.

Arif and Abu Muriefah [7] conjectured that if $D = 2^k$, the only solutions are then given by $(x; y) = (2^k; 2^{2k+1})$ and $(x; y) = (11^{2k-1}; 5 \cdot 2^{2(k-1)/3})$, the latter solution existing only when (k; n) = (3M+1; 3) for some integer $M \ge 0$. Arif and Abu Muriefah obtained partial results towards this conjecture in [7] and also did Cohn in [27]. Arif and Abu Muriefah finally proved the conjecture in [9]. Le [34] and Siksek [55] gave alternative proofs.

Abu Muriefah and Arif [3] conjectured that "there are no solutions for the Diophantine equation $x^2 + 3^{2k} = y^n$, where $n \ge 3$ unless k = 3K + 2 and n = 3 and then there is a unique solution $x = 46 \cdot 3^{3K}$ and $y = 13 \cdot 32^{K}$ ". Luca proved this conjecture in [39].

It was proved by Arif and Abu Muriefah in [8] that equation (1) has

exactly one (infinite) family of solutions if $D = 3^{2k+1}$. Luca [39] solved the case $D = 3^{2k}$ if gcd(x, y) = 1. Liqun [36] solved the equation $x^2 + 3^m = y^n$ for both odd and even m.

The case $D = 2^a 3^b$ (a and b being arbitrary non-negative integers) and gcd(x, y) = 1, was completely solved by Luca [40].

The case $D = 5^{2k}$ has been considered by Arif and Abu Muriefah in [6], who established that equation (1) may have a solution only if 5 divides x and pdoes not divide k for any odd prime p dividing n. The same authors proved in [4] that if $D = 5^{2k+1}$, then equation (1) has no solutions for all $k \ge 0$. Several results has been also obtained by Abu Muriefah and Arif in [2] for $D = q^{2k}$, where q is an odd prime. The same equation is independently solved by Liqun in [37].

Sardha and Srinivasan [54] discussed equation (1) for $D = p_1^{\alpha_1} \dots p_r^{\alpha_r} = D_s D_t^2$, where p_1, \dots, p_r are primes, $\alpha_1, \dots, \alpha_r$ are positive integers and D_s is the square free part of D. They gave many examples for D with $D_s \leq 10000$.

Bérczes and Pink [14] investigated equation $x^2 + d^{2l+1} = y^n$ in unknown integers (x, y, l, n) with $x \ge 1$, $y \ge 1$, $n \ge 3$, $l \ge 0$ and gcd(x, y) = 1. They extended the result of Saradha and Srinivasan [54] to the case $h(-d) \in \{2, 3\}$, where d > 0 is a squarefree integer and h = h(-d) is the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$.

Pink [51] studied the case $D = 2^a 3^b 5^c 7^d$ with gcd(x, y) = 1, where a, b, c, d are non-negative integers.

Luca and Togbé discussed equation (1) for $D = 7^{2k}$ [41] and for $D = 2^a 5^b$ [42].

The case $D = 2^a 5^b 13^c$ was studied by Goins, Luca, and Togbé [32]. The case $D = 5^a 13^b$ was treated in [5] by Abu Muriefah, Luca and Togbé.

Arif and Abu Muriefah [10] determined all the solutions of equation $x^2 + q^{2k+1} = y^n$, with $q \ge 5$ an odd prime, $q \not\equiv 7 \pmod{8}$ and $gcd(n, 3h_0) = 1$ and $n \ge 3$, h_0 denoting the class number of the field $\mathbb{Q}(\sqrt{-q})$.

Le [33] gave all the solutions of equation (1) in the particular case when gcd(x,y) = 1, $D = p^2$, p prime with $3 \le p < 100$. Tengely [59] completely solved (1) for $D = a^2$ with $3 \le a \le 501$ and a odd, under the assumption $(x,y) \in \mathbb{N}^2$, gcd(x,y) = 1.

The equation $A^4 + B^2 = C^n$ for $AB \neq 0$ and $n \geq 4$ was completely solved by Bennett, Ellenberg, and Nathan [11]. Ellenberg also treated this equation in [30].

Bérczes and Pink [13] completely solved the equation $x^2 + p^{2k} = y^n$, where $2 \le p < 100$ is a rational prime and integer unknowns x, y, n, k satisfy $x \ge 1, y > 1, n \ge 3$ prime, $k \ge 0$ and gcd(x, y) = 1. They also established, as a corollary, that there are no solutions to the equation $x^2 + p^{2k} = y^p$ in integer unknowns (x, y, p, k) with $x \ge 1, y > 1, p \ge 5$ prime, $k \ge 0$ and gcd(x, y) = 1.

Cenberci and Senay [22] established that if $y \equiv 5 \pmod{8}$ is a prime power, then the conjecture "if $a^2 + B^2 = y^4$ with gcd(a, B, y) = 1 and a even, and (a, B, y^2) is a Pythagorean triples then the Diophantine equation $x^2 + B^m = y^n$ has the only positive integral solution (x, m, n) = (a, 2, 4)" holds (and also Terai conjecture, presented in [60], holds). Cenberci and Senay [23] discussed the equation $x^2 + q^m = p^n$, in relation with Terai conjecture, with p and q odd primes, which satisfy $q^2 + 1 = 2p^2$ and other conditions. They also gave all solutions for five examples with b and cprimes, such that $b^2 + 1 = 2c^2$, b < 20.000 and c < 157.000.

Zhu and Le [63] gave all solutions of some generalized Lebesque-Nagell equations $x^2 + q^m = y^n$, where the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-q})$ is one.

Zhu discussed in [62] equation $x^2 + q^m = y^3$.

Demirpolat, Cenberci and Senay [29] established that the Diophantine equation $x^2 + 11^{2k+1} = y^n$ has exactly only one family of solution, when n is an odd integer, $n \ge 3$, $k \ge 0$, and h = 1 is the class number of the field $\mathbb{Q}(\sqrt{-11})$.

Cangül, Soydan and Simsek [20] found all solutions of Diophantine equation $x^2 + 11^{2k} = y^n, x \ge 1, y \ge 1, k \in \mathbb{N}, n \ge 3$ and gave p-adic interpretation of that equation.

Cangül, Demirci, Luca, Pinter and Soydan treated in [18] equation (1) for $D = 2^a 11^b$ and gave the complete solution (n, x, y) with $n \ge 3$ and gcd(x, y) = 1. Cangül, Demirci, Inam, Luca and Soydan [21] discussed equation (1) for $D = 2^a 3^b 11^c$ and gave the complete solution (n, x, y) with $n \ge 3$ and gcd(x, y) = 1.

The complete solution (n, a, b, x, y) of the equation $x^2 + 5^a 11^b = y^n$ when gcd(x, y) = 1, except for the case when xab is odd, has been obtained by Cangül, Demirci, Soydan and Tzanakis in [19].

Pink and Rabái [52] gave all the solutions to equation $x^2 + 5^k 17^l = y^n$ in unknown integers (x; y; k; l; n) with $x \ge 1, y > 1, n \ge 3, k \ge 0, l \ge 0$ and gcd(x; y) = 1.

Soydan, Ulas and Zhu [56] completely solved the equation $x^2 + 2^a 19^b = y^n$, where $x \ge 1$, y > 1, $n \ge 3$, $a, b \ge 0$, $l \ge 0$ and gcd(x; y) = 1.

Soydan [57] gave all the solutions to equation $x^2 + 7^{\alpha}11^{\beta} = y^n$ for the non-negative integers $\alpha; \beta; x; y; n \geq 3$, where x and y co-prime, except when α, x is odd and β is even.

Peker and Cenberci [50] completely solved equation $x^2 + 19^m = y^n$, by treating the equation for m even and odd separately.

Xiaowei [61] gave a complete classification of all positive integer solutions (x, y, m, n) of the equation $x^2 + p^{2m} = y^n$, gcd(x, y) = 1, n > 2, where p is an odd prime and solved the equation for certain interesting cases.

References

- 1. F. S. Abu Muriefah, Y. Bugeaud, The Diophantine equation $x^2 + c = y^n$: a brief overview, Revista Colombiana de Matemáticas, Volumen 40 (2006), 31-37.
- 2. F. S. Abu Muriefah, S. A. Arif, The Diophantine equation $x^2 + q^{2k} = y^n$, Arab. J. Sci. Eng. Sect. A Sci. 26 (2001), 53-62.
- 3. F. S. Abu Muriefah, S. A. Arif, On a Diophantine equation,, Bull. Aus-

tral. Math. Soc. 57 (1998), 189-198.

- 4. F. S. Abu Muriefah, S. A. Arif, The Diophantine equation $x^2 + 5^{2k+1} = y^n$, Indian J. Pure Appl. Math. 30 (1999), 229-231.
- 5. F. S. Abu Muriefah, F. Luca, A. Togbé, On the Diophantine equation $x^2 + 5^a 13^b = y^n$, Glasgow Math. J 50 (2008), 175-181.
- 6. S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + 5^{2k} = y^n$, Demonstratio Math. 319 No 2 (2006), 285-289.
- 7. S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + 2^k = y^n$, Internat. J. Math. Math. Sci. 20 (1997), 299-304.
- 8. S. A. Arif, F. S. Abu Muriefah, The Diophantine equation $x^2 + 3^m = y^n$, Internat. J. Math. Math. Sci. 21 (1998), 610-620.
- 9. S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + 2^k = y^n$. II, Arab. J. Math. Sci. 7 (2001), 67-71.
- 10. S. A. Arif, F. S. Abu Muriefah, On the Diophantine equation $x^2 + q^{2k+1} = y^n$, J. Number Theory 95 (2002), 95-100.
- 11. M. A. Bennett, J. S. Ellenberg, C. Ng. Nathan, The Diophantine equation $A^4 + 2^d B^2 = C^n$, Int. J. Number Theory 06, 311 (2010), 311-338.
- M. A. Bennett, C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 [1] (2004), 23-54.
- 13. A. Bérczes, I. Pink, On the Diophantine equation $x^2 + p^{2k} = y^n$, Arch. Math. 91 (2008), 505-517.
- 14. A. Bérczes, I. Pink, On the Diophantine equation $x^2 + d^{2l+1} = y^n$, Glasg. Math. J., 54 (2012), 415-428.
- Yu. Bilu, G. Hanrot, P. M. Voutier, with an appendix by M. Mignotte, Existence of primitive divisors of Lucas and Lehmer sequences, J. Reine Angew. Math. 539 (2001), 75-122.
- 16. E. Brown, Diophantine equations of the form $x^2 + D = y^n$, J. Reine Angew. Math. 274/275 (1975), 385-389.
- Y. Bugeaud, M. Mignotte, S. Siksek, Classical And Modular Approaches To Exponential Diophantine Equations. II. The Lebesgue-Nagell Equation, Compos. Math., (2006), 31-62.
- 18. I. N. Cangül, M. Demirci, F. Luca, A. Pinter, G. Soydan, On the Diophantine equation $x^2 + 2^a 11^b = y^n$, Fibonacci Quart. 48 no. 1 (2010), 39-46.

- 19. I. N. Cangül, M. Demirci, G. Soydan, N. Tzanakis, On the Diophantine Equation $x^2 + 5^a 11^b = y^n$, Functiones et Approximatio Commentarii Mathematici, Volume 43, Number 2 (2010), 209-225.
- 20. I. N. Cangül, G. Soydan, Y.Simsek, A p-adic Look at the Diophantine Equation $x^2 + 11^{2k} = y^n$, AIP Conf. Proc. 1168 (2011), 275-277; doi:http://dx.doi.org/10.1063/1.3241447.
- 21. I. N. Cangül, M. Demirci, I. Inam, F. Luca, G. Soydan, On the Diophantine equation $x^2 + 2^a 3^b 11^c = y^n$, Mathematica Slovaca, Accepted, (2012).
- 22. S. Cerberci, H. Senay, The Diophantine Equation $x^2 + B^m = y^n$, International Journal of Algebra, Vol. 3, no. 13 (2009), 657 662.
- 23. S. Cerberci, H. Senay, The Diophantine Equation $x^2 + q^m = p^n$, Int. J. Contemp. Math. Sciences, Vol. 4, no. 24 (2009), 1181 1191.
- 24. J. H. E. Cohn, The Diophantine equation $x^2 + 2^k = y^n$, Arch. Math. (Basel) 59 (1992), 341-344.
- 25. J. H. E. Cohn, The Diophantine equation $x^2 + C = y^n$, Acta Arith. 65 (1993), 367-381.
- 26. J. H. E. Cohn, The Diophantine equation $x^2 + 3 = y^n$, Glasgow Math. J. 35 (1993), 203-206.
- 27. J. H. E. Cohn, The Diophantine equation $x^2 + 2^k = y^n$. II, Int. J. Math. Math. Sci. 22 (1999), 459-462.
- E. Cohen, On the Ramanujan-Nagell Equation and Its Generalizations, Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association (1990), 81-92.
- 29. E. Demirpolat, S. Cerberci, H. Senay, The Diophantine Equation $x^2 + 11^{2k+1} = y^n$, International Mathematical Forum, 4, no. 6 (2009), 277-280.
- 30. J. S. Ellenberg, Galois representations to Q-curves and the generalized Fermat Equation $A^4 + B^2 = C^p$, Amer. J. Math. 126, (2004), 763-787.
- 31. L. Euler, Algebra, Vol. 2.
- 32. E. Goins, F. Luca, A. Togbé, On the Diophantine Equation $x^2+2^{\alpha}5^{\beta}13^{\gamma} = y^n$, ANTS VIII Proceedings: A.J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, (2008), 430-442.
- 33. M. Le, On the Diophantine equation $x^2 + p^2 = y^n$, Publ. Math. Debrecen. 63 (2003), 67-78.
- 34. M. Le, On Cohn's conjecture concerning the Diophantine equation $x^2 + 2^m = y^n$, Arch. Math. (Basel) 78 [1] (2002), 26-35.

- 35. V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$, Nouvelles Annales des Mathématiques 1 [9] (1850), 178-181.
- 36. T. Liqun, On the Diophantine equation $X^2 + 3^m = Y^n$, Integers: Electronic J. Combinatorial Number Theory 8 (2008), 1-7.
- 37. T. Liqun, On the Diophantine equation $x^2 + 5^m = y^n$, Ramanujan J. 19 (2009), 325-338.
- W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A [13] (1943).
- F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61 (2000), 241-246.
- 40. F. Luca, On the equation $x^2 + 2^a 3^b = y^n$, Int. J. Math. Math. Sci. 29 (2002), 239-244.
- 41. F. Luca, A. Togbé, On the Diophantine equation $x^2 + 7^{2k} = y^n$, Fibonacci Quart. 45 (2007), 322-326.
- 42. F. Luca, A. Togbé, On the Diophantine equation $x^2+2^a5^b=y^n$, Internat. J. Number Theory 4 (2008), 973-979.
- 43. M. Mignotte, B. M. M. de Weger, On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$, Glasgow Math. J. 38 (1996), 77-85.
- T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk Mat. Forensings Skrifter 13 (1923), 65-82.
- T. Nagell, Løsning til oppgave nr 2, 1943, s. 29, Norsk Mathematisk Tidsskrift 30 (1948), 62-64.
- T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159.
- 47. T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc. Sci. Upsaliensis 4 16 [2] (1955).
- 48. T. Nagell, The Diophantine Equation $x^2 + 7 = 2^n$, Arkiv för Matematik 4 (1961), 185-187.
- T. Nagell, Collected papers of Trygve Nagell. Vol. 1-4., Edited by Paulo Ribenboim. Queen's Papers in Pure and Applied Mathematics, Queen's University 121, Kingston, ON, (2002).
- 50. B. Peker, S. Cenberci, On the solutions of the equation $x^2 + 19^m = y^n$, Notes on Number Theory and Discrete Mathematics, Vol. 18 (2012), No. 2, 34-41.

- 51. I. Pink, On the Diophantine equation $x^2+2^\alpha 3^\beta 5^\gamma 7^\delta=y^n$, Publ. Math. Debrecen 70 (2007), 149-166.
- 52. I. Pink, Z. Rabái, On the Diophantine equation $x^2 + 5^k 17^l = y^n$, Communications in Mathematics 19 (2011), 1-9, The University of Ostrava.
- S. Ramanujan, Question 464, Journal of the Indian Mathematical Society 5 (1913), 120.
- 54. N. Saradha, A. Srinivasan, Solutions of some generalized Ramanujan-Nagell equations, Indag. Mathem., N.S., 17 (1), (2006), 103-114.
- 55. S. Siksek, On the Diophantine equation $x^2 = y^p + 2^k z^p$, J. Théor. Nombres Bordeaux 15 (2003), 839-846.
- 56. G. Soydan, M. Ulas, H. L. Zhu, On the Diophantine equation $x^2 + 2^a 19^b = y^n$, Indian Journal of Pure and Applied Mathematics (2012), Volume 43, Issue 3, 251-261.
- 57. G. Soydan, On the Diophantine equation $x^2+7^\alpha 11^\beta=y^n$, Miskolc Mathematical Notes HU ISSN 1787-2405, Vol. 13, No. 2 (2012), 515-527.
- 58. B. Sury, On the Diophantine equation $x^2 + 2 = y^n$, Arch. Math. (Basel) 74 (2000), 350-355.
- 59. S. Tengely, On the Diophantine equation $x^2 + a^2 = 2y^p$, Indag. Math. (N.S.) 15 (2004), 291-304.
- 60. N. Terai, The Diophantine Equation $x^2 + q^m = p^n$, Acta Arithmetica LXIII.4 (1993), 351-358.
- 61. P. Xiaowei, The exponential Lebesgue-Nagell equation $X^2 + P^{2m} = Y^n$, Periodica Mathematica Hungarica, (electronic version) ISSN: 1588-2829, December (2012) (article not assigned to an issue).
- 62. H. L. Zhu, A note on the Diophantine equation $x^2 + q^m = y^3$, Acta Arith. 146 (2011), 195-202.
- H. Zhu, M. Le, On some generalized Lebesque-Nagell equations, Journal of Number Theory, 131 (2011), 458-469.

D=2	(x, y, n) = (5.3.3)
D = 4	(x, y, n) = (2, 2, 3), (11, 5, 3)
D = 11	(x, y, n) = (4.3.3), (58.15.3)
D = 12	(x, y, n) = (2.2.4)
D = 13	(x, y, n) = (70.17.3)
D = 16	(x, y, n) = (4, 2, 5)
D = 17	(x, y, n) = (8, 3, 4)
D = 19	(x, y, n) = (18, 7, 3), (22434, 55, 5)
D = 20	(x, y, n) = (14, 6, 3)
D = 26	(x, y, n) = (1,3,3), (207,35,3)
D = 32	(x, y, n) = (7, 3, 4), (88, 6, 5)
D = 35	(x, y, n) = (36, 11, 3)
D = 40	(x, y, n) = (52, 14, 3)
D = 44	(x, y, n) = (9, 5, 3)
D = 48	(x, y, n) = (4, 4, 3), (4, 2, 6), (148, 28, 3)
D = 49	(x, y, n) = (24, 5, 4), (524, 65, 3)
D = 53	(x, y, n) = (26, 9, 3), (26, 3, 6), (156, 29, 3)
D = 54	(x, y, n) = (17, 7, 3)
D = 56	(x, y, n) = (5, 3, 4), (76, 18, 3)
D = 61	(x, y, n) = (8, 5, 3)
D = 64	(x, y, n) = (8, 2, 7)
D = 65	(x, y, n) = (4, 3, 4)
D = 67	(x, y, n) = (110, 23, 3)
D = 76	(x, y, n) = (7, 5, 3), (1015, 101, 3)
D = 77	(x, y, n) = (2, 3, 4)
D = 80	(x, y, n) = (1, 3, 4)
D = 81	(x, y, n) = (46, 13, 3)
D = 83	(x, y, n) = (140, 27, 3), (140, 3, 9)
D = 89	(x, y, n) = (6, 5, 3)
D = 96	(x, y, n) = (23, 5, 4)
D = 97	(x, y, n) = (48, 7, 4)

Table 1: Cohn's solutions

Table 2: Bugeaud, Mignotte and Siksek's solutions

D = 7	(x, y, n) = (1, 2, 3), (181, 32, 3), (3, 2, 4), (5, 2, 5), (181, 8, 5)
D = 15	(x, y, n) = (7, 4, 3), (1, 2, 4), (7, 2, 6)
D = 18	(x, y, n) = (3,3,3), (15,3,5)
D = 23	(x, y, n) = (2,3,3), (3,2,5), (45,2,11)
D = 25	(x, y, n) = (10, 5, 3)
D = 28	(x, y, n) = (6,4,3), (22,8,3), (225,37,3), (2,2,5), (6,2,6),
	(10,2,7), (22,2,9), (362,2,17)
D = 31	(x, y, n) = (15, 4, 4), (1, 2, 5), (15, 2, 8)
D = 39	(x, y, n) = (5,4,3), (31,10,3), (103,22,3), (5,2,6)
D = 45	(x, y, n) = (96, 21, 3), (6, 3, 4)
D = 47	(x, y, n) = (13, 6, 3), (41, 12, 3), (500, 63, 3), (14, 3, 5), (9, 2, 7)
D = 60	(x, y, n) = (2,4,3), (1586,136,3), (14,4,4), (50354,76,5),
	(2,2,6), (14,2,8)
D = 63	(x, y, n) = (1,4,3), (13537,568,3), (31,4,5), (1,2,6), (31,2,10)
D = 71	(x, y, n) = (21, 8, 3), (35, 6, 4), (46, 3, 7), (21, 2, 9)
D = 72	(x, y, n) = (12, 6, 3), (3, 3, 4)
D = 79	(x, y, n) = (89, 20, 3), (7, 2, 7)
D = 87	(x, y, n) = (16, 7, 3), (13, 4, 4), (13, 2, 8)
D = 92	(x, y, n) = (6, 2, 7), (90, 2, 13)
D = 99	(x, y, n) = (12, 3, 5)
D = 100	(x, y, n) = (5,5,3), (30,10,3), (198,34,3), (55,5,5)