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1. Introduction

In this paper, we focus our attention to the equation

x2 +D = yn, in integers x, y, n≥ 3 (1)

where D is a positive integer. We present however, for some particular cases,
solutions with x = 1 (i.e. x < 3).

V. A. Lebesgue [35] proved in 1850 that there are no non-trivial solutions
for D = 1. Nagell [44] proved in 1923 that equation (1) has no solutions for
D = 3 and D = 5. Because Lebesgue and Nagell were the first mathematicians
with concrete results concerning equation (1), this equation is called in [17]
the Lebesgue-Nagell equation.

S.Ramanujan [53] asked in 1913 if the Diophantine equation x2 + 7 =
2n had any positive solutions (x, n) other than (1, 3), (3, 4), (5, 5), (11, 7) and
(181, 15). Nagell [45] ([48] in English) proved in 1948 that these are the only
solutions. That’s why equation x2 + 7 = 2n is often called the Ramanujan-
Nagell equation. Cohen [28] made a survey of its history and related problems.
Ribenboim collected Nagell’s works in [49].

A comprehensive survey on equation (1) is given by Abu Muriefah and
Bugeaud [1]. We complete that survey with recent results, especially when D
is in some infinite set (see section 3 of the present survey).

45



2. The Diophantine equation x2 +D = yn, where D is fixed

As mentioned in section 1, equation (1) was solved by Lebesgue for D = 1
and by Nagell for D = 3 and D = 5. The case D = 3 was also proved by
Brown [16], and then by Cohn [26].

Ljunggren [38] solved (1) for D = 2, finding the only solution 52+2 = 33.
Cohn asserted in [25] that Euler found the same solution for D = 2 in [31].
Nagell [46] also gave the solution for D = 2. Nagell [47] solved the case D = 4,
obtaining the only solutions 22 + 4 = 23 and 112 + 4 = 53. A more elementary
proof for this case was given by Sury [58].

Cohn [25] completed the solutions for 77 values of D, where 1 ≤ D ≤ 100,
using elementary methods. He established that there are no solutions at all
for D ∈ {1, 3, 5, 6, 8, 9, 10, 14, 21, 22, 24, 27, 29, 30, 33, 34, 36, 37, 38, 41,
42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 66, 68, 69, 70, 73, 75, 78, 82, 84, 85,
88, 90, 91, 93, 94, 98}. He also gave solutions for 31 values of D (see Table 1):

Mignotte and de Weger [43] solved equation (1) for D = 74, obtaining
(x, y, n) = (13,3,5), (985,99,3) and proved that equation (1) has no solution
for D = 86.

Bennett and Skinner [12] applied theory of Galois representations and
modular forms to solve the case D = 55, obtaining (x, y, n) = (3,2,6), (3,4,3),
(419,56,3) and the case D = 95, obtaining (x, y, n)=(11,6,3),(529,6,7).

The remaining values for D were solved in 2004 by Bugeaud, Mignotte
and Siksek [17] (see Table 2).

3. The Diophantine equation x2 + D = yn, with D in some infi-
nite set

In recent years, equation (1) has been analyzed also in the more general
case when D is not fixed but D ∈ S with D > 0. One major result, called the
’Theorem BHV’, was obtained in [15] by Bilu, Hanrot and Voutier, who com-
pletely solved the problem of existence of primitive divisors in Lucas-Lehmer
sequences. This theorem has many applications to Diophantine equations and
it was applied in some papers mentioned below.

Cohn [24] proved that if D = 22k+1, then equation (1) has solutions
(three families of solutions) only when n = 3.

Arif and Abu Muriefah [7] conjectured that if D = 2k, the only solutions

are then given by (x; y) = (2k; 22k+1) and (x; y) = (112k−1; 5 · 22(k−1)/3), the
latter solution existing only when (k;n) = (3M+1; 3) for some integer M ≥ 0.
Arif and Abu Muriefah obtained partial results towards this conjecture in [7]
and also did Cohn in [27]. Arif and Abu Muriefah finally proved the conjecture
in [9]. Le [34] and Siksek [55] gave alternative proofs.

Abu Muriefah and Arif [3] conjectured that ”there are no solutions for
the Diophantine equation x2 + 32k = yn, where n ≥ 3 unless k = 3K + 2 and
n = 3 and then there is a unique solution x = 46 ·33K and y = 13 ·32K”. Luca
proved this conjecture in [39].

It was proved by Arif and Abu Muriefah in [8] that equation (1) has
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exactly one (infinite) family of solutions if D = 32k+1. Luca [39] solved the
case D = 32k if gcd(x, y) = 1. Liqun [36] solved the equation x2 + 3m = yn for
both odd and even m.

The case D = 2a3b (a and b being arbitrary non-negative integers) and
gcd(x, y) = 1, was completely solved by Luca [40].

The case D = 52k has been considered by Arif and Abu Muriefah in [6],
who established that equation (1) may have a solution only if 5 divides x and p
does not divide k for any odd prime p dividing n. The same authors proved in
[4] that if D = 52k+1, then equation (1) has no solutions for all k ≥ 0. Several
results has been also obtained by Abu Muriefah and Arif in [2] for D = q2k,
where q is an odd prime. The same equation is independently solved by Liqun
in [37].

Sardha and Srinivasan [54] discussed equation (1) for D = pα1
1 ...pαr

r =
DsD

2
t , where p1, ..., pr are primes, α1, ..., αr are positive integers and Ds is the

square free part of D. They gave many examples for D with Ds ≤ 10000.
Bérczes and Pink [14] investigated equation x2 + d2l+1 = yn in unknown

integers (x, y, l, n) with x ≥ 1, y ≥ 1, n ≥ 3, l ≥ 0 and gcd(x, y) = 1. They
extended the result of Saradha and Srinivasan [54] to the case h(−d) ∈ {2, 3},
where d > 0 is a squarefree integer and h = h(−d) is the class number of the
imaginary quadratic field Q(

√
−d).

Pink [51] studied the case D = 2a3b5c7d with gcd(x, y) = 1, where a, b,
c, d are non-negative integers.

Luca and Togbé discussed equation (1) for D = 72k [41] and for D = 2a5b

[42].
The case D = 2a5b13c was studied by Goins, Luca, and Togbé [32]. The

case D = 5a13b was treated in [5] by Abu Muriefah, Luca and Togbé.
Arif and Abu Muriefah [10] determined all the solutions of equation

x2 + q2k+1 = yn, with q ≥ 5 an odd prime, q 6≡ 7(mod 8) and gcd(n, 3h0) = 1
and n ≥ 3, h0 denoting the class number of the field Q(

√
−q).

Le [33] gave all the solutions of equation (1) in the particular case when
gcd(x, y) = 1, D = p2, p prime with 3 ≤ p < 100. Tengely [59] completely
solved (1) for D = a2 with 3 ≤ a ≤ 501 and a odd, under the assumption
(x, y) ∈ N2, gcd(x, y) = 1.

The equation A4+B2 = Cn for AB 6= 0 and n ≥ 4 was completely solved
by Bennett, Ellenberg, and Nathan [11]. Ellenberg also treated this equation
in [30].

Bérczes and Pink [13] completely solved the equation x2 + p2k = yn,
where 2 ≤ p < 100 is a rational prime and integer unknowns x, y, n, k satisfy
x ≥ 1, y > 1, n ≥ 3 prime, k ≥ 0 and gcd(x, y) = 1. They also established, as
a corollary, that there are no solutions to the equation x2 +p2k = yp in integer
unknowns (x, y, p, k) with x ≥ 1, y > 1, p ≥ 5 prime, k ≥ 0 and gcd(x, y) = 1.

Cenberci and Senay [22] established that if y ≡ 5(mod 8) is a prime
power, then the conjecture ”if a2 + B2 = y4 with gcd(a,B, y) = 1 and a
even, and (a,B, y2) is a Pythagorean triples then the Diophantine equation
x2+Bm = yn has the only positive integral solution (x,m, n) = (a, 2, 4)” holds
(and also Terai conjecture, presented in [60], holds).
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Cenberci and Senay [23] discussed the equation x2 + qm = pn, in relation
with Terai conjecture, with p and q odd primes, which satisfy q2+1 = 2p2 and
other conditions. They also gave all solutions for five examples with b and c
primes, such that b2 + 1 = 2c2, b < 20.000 and c < 157.000.

Zhu and Le [63] gave all solutions of some generalized Lebesque- Nagell
equations x2 + qm = yn, where the class number of the imaginary quadratic
field Q(

√
−q) is one.

Zhu discussed in [62] equation x2 + qm = y3.
Demirpolat, Cenberci and Senay [29] established that the Diophantine

equation x2 + 112k+1 = yn has exactly only one family of solution, when n
is an odd integer, n ≥ 3, k ≥ 0, and h = 1 is the class number of the field
Q(
√
−11).
Cangül, Soydan and Simsek [20] found all solutions of Diophantine equa-

tion x2 + 112k = yn, x ≥ 1, y ≥ 1, k ∈ N, n ≥ 3 and gave p-adic interpretation
of that equation.

Cangül, Demirci, Luca, Pinter and Soydan treated in [18] equation (1)
for D = 2a11b and gave the complete solution (n, x, y) with n ≥ 3 and
gcd(x, y) = 1. Cangül, Demirci, Inam, Luca and Soydan [21] discussed equa-
tion (1) for D = 2a3b11c and gave the complete solution (n, x, y) with n ≥ 3
and gcd(x, y) = 1.

The complete solution (n, a, b, x, y) of the equation x2+5a11b = yn when
gcd(x, y) = 1, except for the case when xab is odd, has been obtained by
Cangül, Demirci, Soydan and Tzanakis in [19].

Pink and Rabái [52] gave all the solutions to equation x2 + 5k17l = yn

in unknown integers (x; y; k; l;n) with x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and
gcd(x; y) = 1.

Soydan, Ulas and Zhu [56] completely solved the equation x2 + 2a19b =
yn, where x ≥ 1, y > 1, n ≥ 3, a, b ≥ 0, l ≥ 0 and gcd(x; y) = 1.

Soydan [57] gave all the solutions to equation x2 + 7α11β = yn for the
non-negative integers α;β;x; y;n ≥ 3, where x and y co-prime, except when
α, x is odd and β is even.

Peker and Cenberci [50] completely solved equation x2 + 19m = yn, by
treating the equation for m even and odd separately.

Xiaowei [61] gave a complete classification of all positive integer solutions
(x, y, m, n) of the equation x2 + p2m = yn , gcd(x, y) = 1, n > 2, where p is
an odd prime and solved the equation for certain interesting cases.
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Table 1: Cohn’s solutions
D = 2 (x, y, n) = (5,3,3)
D = 4 (x, y, n) = (2,2,3), (11,5,3)
D = 11 (x, y, n) = (4,3,3), (58,15,3)
D = 12 (x, y, n) = (2,2,4)
D = 13 (x, y, n) = (70,17,3)
D = 16 (x, y, n) = (4,2,5)
D = 17 (x, y, n) = (8,3,4)
D = 19 (x, y, n) = (18,7,3), (22434,55,5)
D = 20 (x, y, n) = (14,6,3)
D = 26 (x, y, n) = (1,3,3), (207,35,3)
D = 32 (x, y, n) = (7,3,4), (88,6,5)
D = 35 (x, y, n) = (36,11,3)
D = 40 (x, y, n) = (52,14,3)
D = 44 (x, y, n) = (9,5,3)
D = 48 (x, y, n) = (4,4,3), (4,2,6), (148,28,3)
D = 49 (x, y, n) = (24,5,4), (524,65,3)
D = 53 (x, y, n) = (26,9,3), (26,3,6), (156,29,3)
D = 54 (x, y, n) = (17,7,3)
D = 56 (x, y, n) = (5,3,4), (76,18,3)
D = 61 (x, y, n) = (8,5,3)
D = 64 (x, y, n) = (8,2,7)
D = 65 (x, y, n) = (4,3,4)
D = 67 (x, y, n) = (110,23,3)
D = 76 (x, y, n) = (7,5,3), (1015,101,3)
D = 77 (x, y, n) = (2,3,4)
D = 80 (x, y, n) = (1,3,4)
D = 81 (x, y, n) = (46,13,3)
D = 83 (x, y, n) = (140,27,3), (140,3,9)
D = 89 (x, y, n) = (6,5,3)
D = 96 (x, y, n) = (23,5,4)
D = 97 (x, y, n) = (48,7,4)
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Table 2: Bugeaud, Mignotte and Siksek’s solutions
D = 7 (x, y, n) = (1,2,3), (181,32,3), (3,2,4), (5,2,5), (181,8,5)
D = 15 (x, y, n) = (7,4,3), (1,2,4), (7,2,6)
D = 18 (x, y, n) = (3,3,3), (15,3,5)
D = 23 (x, y, n) = (2,3,3), (3,2,5), (45,2,11)
D = 25 (x, y, n) = (10,5,3)
D = 28 (x, y, n) = (6,4,3), (22,8,3), (225,37,3), (2,2,5), (6,2,6),

(10,2,7), (22,2,9), (362,2,17)
D = 31 (x, y, n) = (15,4,4), (1,2,5), (15,2,8)
D = 39 (x, y, n) = (5,4,3), (31,10,3), (103,22,3), (5,2,6)
D = 45 (x, y, n) = (96,21,3), (6,3,4)
D = 47 (x, y, n) = (13,6,3), (41,12,3), (500,63,3), (14,3,5), (9,2,7)
D = 60 (x, y, n) = (2,4,3), (1586,136,3), (14,4,4), (50354,76,5),

(2,2,6), (14,2,8)
D = 63 (x, y, n) = (1,4,3), (13537,568,3), (31,4,5), (1,2,6), (31,2,10)
D = 71 (x, y, n) = (21,8,3), (35,6,4), (46,3,7), (21,2,9)
D = 72 (x, y, n) = (12,6,3), (3,3,4)
D = 79 (x, y, n) = (89,20,3), (7,2,7)
D = 87 (x, y, n) = (16,7,3), (13,4,4), (13,2,8)
D = 92 (x, y, n) = (6,2,7), (90,2,13)
D = 99 (x, y, n) = (12,3,5)
D = 100 (x, y, n) = (5,5,3), (30,10,3), (198,34,3), (55,5,5)
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