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1. Introduction 

 
We prove a formula involving a symmetric and continuous bilinear functional. 

Due to the correspondence between this type of functionals and the self adjoint 
operators, the same formula will be expressed in terms of self adjoint operators. For 
general differentiability theory, we refer to [1] and [3]. For functional analysis 
notions, we refer to [2] and [3]. 

 
2. Results 

 
A. We begin with a preliminary result. 
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,
 

E F
F

be normed spaces (over  or ).  Let 
Let also be a bilinear, symmetric and continuous map. We 

define the function 
:T E E× →

:f E → F via 

( ) ( )1 ,
2

f x T x x=  

f is differentiable of class ∞ . More precisely: Lemma. The function 
For any a E∈ , one has 

( )2d f a T=  
Consequently, for any   and any , one has  a∈E 3n ≥



( ) 0nd f a =  
Proof (We give the proof for the sake of completeness). 
One has the obvious equality 

1
2

f T h= , 

where is the linear and continuous map given via :h E E→ ×E
( ) ( ),h x x x= . 

Hence, for any u E  ∈

( ) ( )( ) ( )1 1 ,
2 2

df u dT h u h dT u u h= =  (1) 
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It is known that, for all  in ,a b E  and all ,x y  in E , one has 
( )( ) ( ) ( ), , , ,dT a b x y T x b T a y= +

b
 

E , (1) gives hence, for all u in ,
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1 1 1, , , , , ,
2 2 2

df u b dT u u h b dT u u b b T b u T u b T u b= = = + =  (2) 

Implicitely, we made use of the fact that T  is of class ∞ . 
 

Now, we have the function 
: Eϕ → L ( ) = {,E F }: |  is linear and continuous V E F V→ ,  

given via 
( ) ( )u df uϕ =  (*) 

and we must prove that  
( )d u Tϕ =  (3) 

for all u , using the canonical identification between L(E, L(E,F)) and 
L

E∈
( ) { }, : |  is linear and continuousE F H E E F H= × → . Recall that the 

identification is the following: 
HV F)B(E, H F)), L(E,L(L(E,V ≡→∈∈  

E , ( ) ( ) ( ),H u b V u b=  Namely, if V  is given, we have, for all  in ,u b
Consequently, in order to prove (3), one must prove that, in the normed space 

L(E,F) one has for all : u E∈

( ) ( ) ( )( )1lim 0
x u

x u V x u
x u

ϕ ϕ
→

− − − =
−

 (4) 

 
Here, for all b , one has E∈ ( ) bV b T= , where bT ∈L(E,F) is defined via 

( ),bT T b c=  (5) 
for all . c E∈

But, using (*) and (2), we have, for all in ,u b E  



( )( ) ( ),u b T u bϕ =  (6) 
Relations (5) and (6) make (4) obvious: for any , ,x u y E∈ , one has  

( ) ( ) ( )( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ), , , , , 0.x u

x u V x u y x y u y V x u y

T x y T u y T y T x y T u y T x u y

ϕ ϕ ϕ ϕ

−

− − − = − − − =

− − = − − − =
 

 
B. We shall use the previous lemma for a real Hilbert  space E, equipped with 

the scalar product ( ) ( ), |x y x y→ )  and for  .F =  
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Proposition 1. Let E  be a real Hilbert space and a E∈ . Let T E be 
a bilinear, symmetric and continuous map (functional). 

: E× →

Then, there exist two continuous functions : Eω → , : E Eε → , such that 
and having the property that, for all ( ) ( )0,aω ε= x E∈ , one has 0a =

( ) ( ) ( ) ( )( )( )
0

1lim , | 0
t

T x t x a x x t a x t x a x t
t

ω ω ε
→

+ + − + + + + + =  

Proof. Let us define  via :f E →

( ) ( )1 ,
2

f x T x x=  

Apply the lemma to see that, for any b F∈  
( )2d f b T=  (**) 

 
f and  are continuous. dfOf course, 

 Let a be arbitrarily taken. Because E∈ f  is differentiable at , we find 
a function 

a
: Eω → ( ) 0a =which is continuous and has the property ω , such that, 

for all in ,u v E  one has 
( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

f v f a df a v a v a v

f u f a df a u a u a u

ω

ω

− = − + −

− = − + −
 

This implies that, for any  in ,u v E  one has 
( ) ( ) ( )( ) ( ) ( )f v f u df a v u v a v u a uω ω− = − + − − −  (7) 

Now, let us fix u arbitrarily. Because E∈ f is differentiable at u , we can find 
a continuous function , such that : EΩ → ( ) 0uΩ = , having the property that, for 
all  in v E , one has  

( ) ( ) ( )( ) ( )f v f u df u v u v u v− = − + − Ω  (8) 
The function  is differentiable at a  (here :df E E→ ' 'E is the dual of E ). We 

can find a continuous function 1 : E E 'ε → , such that ( )1 0aε = and for all  u E∈
( ) ( ) ( )( ) ( )2

1df u df a d f a u a u a uε= + − + −  (9) 
The Riesz–Fréchet representation theorem for the dual of a Hilbert space 

furnishes a linear and isometric bijection : 'H E E→  having the property that, for 
all ' 'x E∈ y E∈and all , one has 

( ) ( ) ( )' | |x y y x x y= = , 
( )'x H x= . So where 



( ) ( ) ( )' | |x y y x x y= = . (10) 
Now, in (9) we define : E Eε → , via 1Hε ε= . The function  ε  is continuous and 

. ( ) 0=
,

aε
E , one has (see (10)) So, for any u in v

 

( )( ) ( )( )( ) ( )( )1 1 | |u v H u v u vε ε ε= =  (11) 
 
In view of (9), (8) becomes (see (11)): 

( ) ( ) ( ) ( )( ) ( )( )( ) ( )
( )( ) ( )( )( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )

2
1

2
1

2 , | .

f v f u df a d f a u a u a u v u v u v

df a v u d f a u a v u u a u v u v u v

df a v u d f a u a v u u a u v u v u v

ε

ε

ε

− = + − + − − + − Ω =

= − + − − + − − + − Ω

= − + − − + − − + − Ω

 

From the last equality and (7), we obtain  
( ) ( )

( )( ) ( )( ) ( )2 , |

v a v u a u

d f a u a v u u a u v u v u v

ω ω

ε

− − − =

− − + − − + − Ω ,
 

Because of (**), we write the last equality as follows: 
 

( ) ( ) ( )
( )( ) ( )

,

| .

T u a v u u a v v a v

u a u v u v u v

ω ω

ε

− − + − − − +

+ − − = − − Ω
 (12) 

 
Let us denote 
u a x− = v u t− = and . 

Hence 
,  ,  v a v u u a t x u x a v u t x a t− = − + − = + = + = + = + +  

and (12) becomes 
( ) ( ) ( ) ( )( )

( )
, |T x t x x a x t x a t x x a t

t x a t

ω ω ω+ + − + + + + + =

− Ω + +
 

Consequently, for any 0  and any t E≠ ∈ x E∈ : 
 

( ) ( ) ( ) ( )( )( )
( )

1 , |T x t x a x x t x a t x a x t
t

a x t

ω ω ε+ + − + + + + + =

= −Ω + +
 (13) 

 
We have 

( ) ( )
0

lim lim 0
v u v u

v v
→ − →
Ω = Ω = , 

which means 
( )

0
lim 0
t

a x t
→

Ω + + =  
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:
and (13) says that the proof is finished.  

It is known that a bilinear, symmetric and continuous functional T E  
generates the self adjoint operator  characterized by the fact that, for any 

E× →
:A E E→

,x y in E  
( ) ( )( ) ( )( ), | |T x y A x y x A y= =  

and all self adjoint operators  are generated in this way.  :A E E→
Hence, we obtain the following alternative form of the previous result: 

 
Proposition 1’. Let E  be a real Hilbert space and a E∈ . Let  be a 

self adjoint operator. 
:A E E→

Then, there exist two continuous functions : Eω → , : E Eε → , such that 
and having the property that, for all ( ) ( )0,  0aω ε= x E∈ , one has  a =

 

( )( ) ( ) ( ) ( )( )( )
0

1lim | | 0
t

A x t x a x x t x a t x a x t
t

ω ω ε
→

+ + − + + + + + =  

 
Considering Proposition 1 for the particular case when  

( ) ( ), |T x y x y=  
E , we obtain: for all ,x y  in 

 
Proposition 2. Let E be a real Hilbert space and a E∈ . Then, there exist two 

continuous functions : Eω → , : E Eε → , such that ( ) ( )0,  0a aω ε= =  and 
having the property that, for all x E∈ , one has 

 

( ) ( ) ( ) ( )( )( )
0

1lim | | 0
t

x t x a x x t x a t x a x t
t

ω ω ε
→

+ + − + + + + + =  

 
The reader is invited to consider Proposition 1 (respectively, Proposition 1’) in 

the particular case when E = n with the usual scalar product 

( ) ( )( )1 2 1 2
1

, ,..., | , ,...,
n

n n i
i

ix x x x y y y y x y
=

= = =∑  

for  given via : n nT × →

j

n

( ) ( )( )1 2 1 2 ,
, 1

, ,..., | , ,...,
n

n n i j i
i j

T x x x x y y y y a x y
=

= = = ∑  

(respectively for given via : nA →
( )( ) ( )1 2 1 2, ,..., , ,...,n nA x x x x y y y y= = = , 

where yi =  for all 
1

n

i
j

y
=

=∑ ij ja x 1, 2,...,i n= ). 

 
Here, the real matrix ( )

1 ,1ij i n j n
a

≤ ≤ ≤ ≤
 is symmetric, i.e. ij jia a=  for all i  and j . 
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